C/C++ 原生API实现线程池的方法

 更新时间:2021年11月2日 00:00  点击:2005 作者:lyshark

线程池有两个核心的概念,一个是任务队列,一个是工作线程队列。任务队列负责存放主线程需要处理的任务,工作线程队列其实是一个死循环,负责从任务队列中取出和运行任务,可以看成是一个生产者和多个消费l者的模型。在一些高并发的网络应用中,线程池也是常用的技术。陈硕大神推荐的C++多线程服务端编程模式为:one loop per thread + thread pool,通常会有单独的线程负责接受来自客户端的请求,对请求稍作解析后将数据处理的任务提交到专门的计算线程池。

ThreadPool 线程池同步事件: 线程池内的线程函数同样支持互斥锁,信号控制,内核事件控制,临界区控制.

#include <Windows.h>
#include <iostream>
#include <stdlib.h>

unsigned long g_count = 0;

// --------------------------------------------------------------
// 线程池同步-互斥量同步
void NTAPI TaskHandlerMutex(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
	// 锁定资源
	WaitForSingleObject(*(HANDLE *)Context, INFINITE);

	for (int x = 0; x < 100; x++)
	{
		printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
		g_count = g_count + 1;
	}

	// 解锁资源
	ReleaseMutexWhenCallbackReturns(Instance, *(HANDLE*)Context);
}

void TestMutex()
{
	// 创建互斥量
	HANDLE hMutex = CreateMutex(NULL, FALSE, NULL);

	PTP_WORK pool = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerMutex, &hMutex, NULL);

	for (int i = 0; i < 1000; i++)
	{
		SubmitThreadpoolWork(pool);
	}

	WaitForThreadpoolWorkCallbacks(pool, FALSE);
	CloseThreadpoolWork(pool);
	CloseHandle(hMutex);

	printf("相加后 ---> %d \n", g_count);
}

// --------------------------------------------------------------
// 线程池同步-事件内核对象
void NTAPI TaskHandlerKern(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
	// 锁定资源
	WaitForSingleObject(*(HANDLE *)Context, INFINITE);

	for (int x = 0; x < 100; x++)
	{
		printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
		g_count = g_count + 1;
	}

	// 解锁资源
	SetEventWhenCallbackReturns(Instance, *(HANDLE*)Context);
}

void TestKern()
{
	HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
	SetEvent(hEvent);

	PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerKern, &hEvent, NULL);

	for (int i = 0; i < 1000; i++)
	{
		SubmitThreadpoolWork(pwk);
	}

	WaitForThreadpoolWorkCallbacks(pwk, FALSE);
	CloseThreadpoolWork(pwk);

	printf("相加后 ---> %d \n", g_count);
}

// --------------------------------------------------------------
// 线程池同步-信号量同步
void NTAPI TaskHandlerSemaphore(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
	// 锁定资源
	WaitForSingleObject(*(HANDLE *)Context, INFINITE);

	for (int x = 0; x < 100; x++)
	{
		printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
		g_count = g_count + 1;
	}

	// 解锁资源
	ReleaseSemaphoreWhenCallbackReturns(Instance, *(HANDLE*)Context, 1);
}

void TestSemaphore()
{
	// 创建信号量为100
	HANDLE hSemaphore = CreateSemaphore(NULL, 0, 100, NULL);

	ReleaseSemaphore(hSemaphore, 10, NULL);

	PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerSemaphore, &hSemaphore, NULL);

	for (int i = 0; i < 1000; i++)
	{
		SubmitThreadpoolWork(pwk);
	}

	WaitForThreadpoolWorkCallbacks(pwk, FALSE);
	CloseThreadpoolWork(pwk);
	CloseHandle(hSemaphore);

	printf("相加后 ---> %d \n", g_count);
}

// --------------------------------------------------------------
// 线程池同步-临界区
void NTAPI TaskHandlerLeave(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
	// 锁定资源
	EnterCriticalSection((CRITICAL_SECTION*)Context);

	for (int x = 0; x < 100; x++)
	{
		printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
		g_count = g_count + 1;
	}

	// 解锁资源
	LeaveCriticalSectionWhenCallbackReturns(Instance, (CRITICAL_SECTION*)Context);
}

void TestLeave()
{
	CRITICAL_SECTION cs;
	InitializeCriticalSection(&cs);

	PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerLeave, &cs, NULL);

	for (int i = 0; i < 1000; i++)
	{
		SubmitThreadpoolWork(pwk);
	}

	WaitForThreadpoolWorkCallbacks(pwk, FALSE);
	DeleteCriticalSection(&cs);
	CloseThreadpoolWork(pwk);

	printf("相加后 ---> %d \n", g_count);
}

int main(int argc,char *argv)
{
	//TestMutex();
	//TestKern();
	//TestSemaphore();
	TestLeave();

	system("pause");
	return 0;
}

简单的IO读写:

#include <Windows.h>
#include <iostream>
#include <stdlib.h>

// 简单的异步文本读写
int ReadWriteIO()
{
	char enContent[] = "hello lyshark";
	char deContent[255] = { 0 };

	// 异步写文件
	HANDLE hFileWrite = CreateFile(L"d://test.txt", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, FILE_FLAG_SEQUENTIAL_SCAN, NULL);
	if (INVALID_HANDLE_VALUE == hFileWrite)
	{
		return 0;
	}

	WriteFile(hFileWrite, enContent, strlen(enContent), NULL, NULL);
	FlushFileBuffers(hFileWrite);

	CancelSynchronousIo(hFileWrite);
	CloseHandle(hFileWrite);

	// 异步读文件

	HANDLE hFileRead = CreateFile(L"d://test.txt", GENERIC_READ, 0, NULL, OPEN_ALWAYS, NULL, NULL);
	if (INVALID_HANDLE_VALUE == hFileRead)
	{
		return 0;
	}

	ReadFile(hFileRead, deContent, 255, NULL, NULL);
	CloseHandle(hFileRead);
	std::cout << "读出内容: " << deContent << std::endl;
	return 1;
}


// 通过IO获取文件大小
int GetFileSize()
{
	HANDLE hFile = CreateFile(L"d://test.txt", 0, 0, NULL, OPEN_EXISTING, NULL, NULL);
	if (INVALID_HANDLE_VALUE == hFile)
	{
		return 0;
	}

	ULARGE_INTEGER ulFileSize;
	ulFileSize.LowPart = GetFileSize(hFile, &ulFileSize.HighPart);

	LARGE_INTEGER lFileSize;
	BOOL ret = GetFileSizeEx(hFile, &lFileSize);

	std::cout << "文件大小A: " << ulFileSize.QuadPart << " bytes" << std::endl;
	std::cout << "文件大小B: " << lFileSize.QuadPart << " bytes" << std::endl;
	CloseHandle(hFile);

	return 1;
}

// 通过IO设置文件指针和文件尾
int SetFilePointer()
{
	char deContent[255] = { 0 };
	DWORD readCount = 0;

	HANDLE hFile = CreateFile(L"d://test.txt", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, NULL, NULL);
	if (INVALID_HANDLE_VALUE == hFile)
	{
		return 0;
	}

	LARGE_INTEGER liMove;

	// 设置移动位置
	liMove.QuadPart = 2;
	SetFilePointerEx(hFile, liMove, NULL, FILE_BEGIN);

	// 移动到文件末尾
	SetEndOfFile(hFile);

	ReadFile(hFile, deContent, 255, &readCount, NULL);
	std::cout << "移动指针后读取: " << deContent << " 读入长度: " << readCount << std::endl;

	CloseHandle(hFile);

	// 设置编码格式
	_wsetlocale(LC_ALL, L"chs");
	setlocale(LC_ALL, "chs");
	wprintf(L"%s", deContent);
}

int main(int argc,char *argv)
{
	// 读写IO
	ReadWriteIO();

	// 取文件长度
	GetFileSize();

	// 设置文件指针
	SetFilePointer();

	return 0;
}

到此这篇关于C/C++ 原生API实现线程池的文章就介绍到这了,更多相关C++实现线程池内容请搜索猪先飞以前的文章或继续浏览下面的相关文章希望大家以后多多支持猪先飞!

原文出处:https://www.cnblogs.com/LyShark/p/15493202.html

[!--infotagslink--]

相关文章

  • 基于springcloud异步线程池、高并发请求feign的解决方案

    这篇文章主要介绍了基于springcloud异步线程池、高并发请求feign的解决方案,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-02-25
  • C++ STL标准库std::vector的使用详解

    vector是表示可以改变大小的数组的序列容器,本文主要介绍了C++STL标准库std::vector的使用详解,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...2022-03-06
  • C++中取余运算的实现

    这篇文章主要介绍了C++中取余运算的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-02-23
  • 详解C++ string常用截取字符串方法

    这篇文章主要介绍了C++ string常用截取字符串方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-04-25
  • C++调用C#的DLL程序实现方法

    本文通过例子,讲述了C++调用C#的DLL程序的方法,作出了以下总结,下面就让我们一起来学习吧。...2020-06-25
  • C++中四种加密算法之AES源代码

    本篇文章主要介绍了C++中四种加密算法之AES源代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...2020-04-25
  • C++ 整数拆分方法详解

    整数拆分,指把一个整数分解成若干个整数的和。本文重点给大家介绍C++ 整数拆分方法详解,非常不错,感兴趣的朋友一起学习吧...2020-04-25
  • WebStorm无法正确识别Vue3组合式API的解决方案

    这篇文章主要介绍了WebStorm无法正确识别Vue3组合式API的解决方案,帮助大家更好的理解和学习使用vue框架,感兴趣的朋友可以了解下...2021-02-18
  • C++中 Sort函数详细解析

    这篇文章主要介绍了C++中Sort函数详细解析,sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变...2022-08-18
  • C++万能库头文件在vs中的安装步骤(图文)

    这篇文章主要介绍了C++万能库头文件在vs中的安装步骤(图文),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-02-23
  • 浅谈vue2的$refs在vue3组合式API中的替代方法

    这篇文章主要介绍了浅谈vue2的$refs在vue3组合式API中的替代方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-04-18
  • 详解C++ bitset用法

    这篇文章主要介绍了C++ bitset用法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-04-25
  • 浅谈C++中的string 类型占几个字节

    本篇文章小编并不是为大家讲解string类型的用法,而是讲解我个人比较好奇的问题,就是string 类型占几个字节...2020-04-25
  • C++ Eigen库计算矩阵特征值及特征向量

    这篇文章主要为大家详细介绍了C++ Eigen库计算矩阵特征值及特征向量,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...2020-04-25
  • Java线程池中的各个参数如何合理设置

    这篇文章主要介绍了Java线程池中的各个参数如何合理设置操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教...2021-06-19
  • C++ pair的用法实例详解

    这篇文章主要介绍了C++ pair的用法实例详解的相关资料,需要的朋友可以参考下...2020-04-25
  • VSCode C++多文件编译的简单使用方法

    这篇文章主要介绍了VSCode C++多文件编译的简单使用方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-03-29
  • C++中的循环引用

    虽然C++11引入了智能指针的,但是开发人员在与内存的斗争问题上并没有解放,如果我门实用不当仍然有内存泄漏问题,其中智能指针的循环引用缺陷是最大的问题。下面通过实例代码给大家介绍c++中的循环引用,一起看看吧...2020-04-25
  • java中多线程与线程池的基本使用方法

    在Java中,我们可以利用多线程来最大化地压榨CPU多核计算的能力,下面这篇文章主要给大家介绍了关于java中多线程与线程池基本使用的相关资料,需要的朋友可以参考下...2021-09-13
  • C++随机点名生成器实例代码(老师们的福音!)

    这篇文章主要给大家介绍了关于C++随机点名生成器的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-04-25