Pandas DataFrame操作数据增删查改

 更新时间:2022年10月12日 20:22  点击:882 作者:Python热爱者

一、DataFrame数据准备

增、删、改、查的方法有很多很多种,这里只展示出常用的几种。

参数inplace默认为False,只能在生成的新数据块中实现编辑效果。当inplace=True时执行内部编辑,不返回任何值,原数据发生改变。

import numpy as np
import pandas as pd
#测试数据。
df = pd.DataFrame(data = [['lisa','f',22],['joy','f',22],['tom','m','21']],index = [1,2,3],columns = ['name','sex','age'])

数据:

   name sex age
1  lisa   f  22
2   joy   f  22
3   tom   m  21

二、增删改查操作

1,增

(1).按列增加

citys = ['ny','zz','xy']
df.insert(0,'city',citys) #在第0列,加上column名称为city,值为citys的数值。
jobs = ['student','AI','teacher']
df['job'] = jobs #默认在df最后一列加上column名称为job,值为jobs的数据。
df.loc[:,'salary'] = ['1k','2k','2k','2k','3k'] #在df最后一列加上column名称为salary,值为等号右边数据。

(2)按行增加

若df中没有index为“4”的这一行的话,该行代码作用是往df中加一行index为“4”,值为等号右边值的数据。若df中已经有index为“4”的这一行,则该行代码作用是把df中index为“4”的这一行修改为等号右边数据。

df.loc[4] = ['zz','mason','m',24,'engineer']
df_insert = pd.DataFrame({'name':['mason','mario'],'sex':['m','f'],'age':[21,22]},index = [4,5])
ndf = df.append(df_insert,ignore_index = True) 

返回添加后的值,并不会修改df的值。ignore_index默认为False,意思是不忽略index值,即生成的新的ndf的index采用df_insert中的index值。若为True,则新的ndf的index值不使用df_insert中的index值,而是自己默认生成。

2,查

(1)方法一:df[‘column_name’] 和df[row_start_index, row_end_index]

df['name']
df['gender']
df[['name','gender']] #选取多列,多列名字要放在list里
df[0:]    #第0行及之后的行,相当于df的全部数据,注意冒号是必须的
df[:2]    #第2行之前的数据(不含第2行)
df[0:1]   #第0行
df[1:3]   #第1行到第2行(不含第3行)
df[-1:]   #最后一行
df[-3:-1] #倒数第3行到倒数第1行(不包含最后1行即倒数第1行,这里有点烦躁,因为从前数时从第0行开始,从后数就是-1行开始,毕竟没有-0)

(2)方法一:df.loc[index,column]

df.loc[index, column_name],选取指定行和列的数据

df.loc[0,'name'] # 'Snow'
df.loc[0:2, ['name','age']]          #选取第0行到第2行,name列和age列的数据, 注意这里的行选取是包含下标的。
df.loc[[2,3],['name','age']]          #选取指定的第2行和第3行,name和age列的数据
df.loc[df['gender']=='M','name']      #选取gender列是M,name列的数据
df.loc[df['gender']=='M',['name','age']] #选取gender列是M,name和age列的数据

(3)方法三:iloc[row_index, column_index]

'''
学习中遇到问题没人解答?小编创建了一个Python学习交流群:711312441
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
df.iloc[0,0]         #第0行第0列的数据,'Snow'
df.iloc[1,2]         #第1行第2列的数据,32
df.iloc[[1,3],0:2]   #第1行和第3行,从第0列到第2列(不包含第2列)的数据
df.iloc[1:3,[1,2]    #第1行到第3行(不包含第3行),第1列和第2列的数据

3,改

(1)改行列标题

df.columns = ['name','gender','age'] #尽管我们只想把'sex'改为'gender',但是仍然要把所有的列全写上,否则报错。
df.rename(columns = {'name':'Name','age':'Age'},inplace = True) #只修改name和age。inplace若为True,直接修改df,否则,不修改df,只是返回一个修改后的数据。
df.index = list('abc')#把index改为a,b,c.直接修改了df。
df.rename({1:'a',2:'b',3:'c'},axis = 0,inplace = True)#无返回值,直接修改df的index。

(2)改数值

使用loc

df.loc[1,'name'] = 'aa'              #修改index为‘1',column为‘name'的那一个值为aa。
df.loc[1] = ['bb','ff',11]           #修改index为‘1'的那一行的所有值。
df.loc[1,['name','age']] = ['bb',11] #修改index为‘1',column为‘name'的那一个值为bb,age列的值为11。

使用iloc[row_index, column_index]

df.iloc[1,2] = 19              #修改某一无素
df.iloc[:,2] = [11,22,33]      #修改一整列
df.iloc[0,:] = ['lily','F',15] #修改一整行

4,删

(1)删除行

df.drop([1,3],axis = 0,inplace = False)#删除index值为1和3的两行,

(2)删除列

df.drop(['name'],axis = 1,inplace = False)  #删除name列。
del df['name']       #删除name列。
ndf = df.pop('age')  #删除age列,操作后,df都丢掉了age列,age列返回给了ndf。

到此这篇关于Pandas DataFrame操作数据增删查改的文章就介绍到这了,更多相关Pandas DataFrame内容请搜索猪先飞以前的文章或继续浏览下面的相关文章希望大家以后多多支持猪先飞!

原文出处:https://blog.csdn.net/qdPython/article/details/127107947

[!--infotagslink--]

相关文章

  • pandas pd.read_csv()函数中parse_dates()参数的用法说明

    这篇文章主要介绍了pandas pd.read_csv()函数中parse_dates()参数的用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-05
  • Pandas实现DataFrame按行求百分数(比例数)

    今天小编就为大家分享一篇Pandas实现DataFrame按行求百分数(比例数),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-09
  • python使用pandas按照行数分割表格

    本文主要介绍了python使用pandas按照行数分割表格,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...2021-08-13
  • 解决python3安装pandas出错的问题

    这篇文章主要介绍了解决python3安装pandas出错的问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教...2021-05-20
  • Python数据分析之pandas比较操作

    比较操作是很简单的基础知识,不过Pandas中的比较操作有一些特殊的点,本文介绍的非常详细,对正在学习python的小伙伴们很有帮助.需要的朋友可以参考下...2021-05-20
  • 用pandas划分数据集实现训练集和测试集

    这篇文章主要介绍了用pandas划分数据集实现训练集和测试集,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-07-20
  • pandas 实现将两列中的较大值组成新的一列

    这篇文章主要介绍了pandas 实现将两列中的较大值组成新的一列,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-26
  • pandas 读取excel文件的操作代码

    pandas 读取excel文件使用的是 read_excel方法。本文将详细解析read_excel方法的常用参数,以及实际的使用示例,感兴趣的朋友跟随小编一起看看吧...2021-11-01
  • 解决python pandas读取excel中多个不同sheet表格存在的问题

    这篇文章主要介绍了解决python pandas读取excel中多个不同sheet表格存在的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-07-14
  • Pandas使用stack和pivot实现数据透视的方法

    笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas中使用stack和pivot实现数据透视。感兴趣的小伙伴们可以参考一下...2021-09-05
  • 十分钟轻松掌握dataframe数据选择

    这篇文章主要介绍了十分钟轻松掌握dataframe数据选择,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-04-04
  • 对python pandas中 inplace 参数的理解

    这篇文章主要介绍了对python pandas中 inplace 参数的理解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-06-28
  • Pandas.DataFrame转置的实现 <font color=red>原创</font>

    这篇文章主要介绍了Pandas.DataFrame转置的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-03-09
  • pandas 实现某一列分组,其他列合并成list

    这篇文章主要介绍了pandas 实现某一列分组,其他列合并成list的案例。具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-26
  • python读取hdfs并返回dataframe教程

    这篇文章主要介绍了python读取hdfs并返回dataframe教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-06-06
  • Python Pandas常用函数方法总结

    今天给大家带来的是关于Python的相关知识,文章围绕着Pandas常用函数方法展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下...2021-06-16
  • python 用pandas实现数据透视表功能

    这篇文章主要介绍了python 用pandas实现数据透视表功能的方法,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下...2020-12-21
  • Pandas 解决dataframe的一列进行向下顺移问题

    今天小编就为大家分享一篇Pandas 解决dataframe的一列进行向下顺移问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-09
  • 基于pandas向csv添加新的行和列

    这篇文章主要介绍了基于pandas向csv添加新的行和列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下...2020-05-26
  • 快速解释如何使用pandas的inplace参数的使用

    这篇文章主要介绍了快速解释如何使用pandas的inplace参数的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-07-23