PyTorch 迁移学习实践(几分钟即可训练好自己的模型)

 更新时间:2021年3月27日 00:01  点击:2009

前言

如果你认为深度学习非常的吃GPU,或者说非常的耗时间,训练一个模型要非常久,但是你如果了解了迁移学习那你的模型可能只需要几分钟,而且准确率不比你自己训练的模型准确率低,本节我们将会介绍两种方法来实现迁移学习

迁移学习方法介绍

  • 微调网络的方法实现迁移学习,更改最后一层全连接,并且微调训练网络
  • 将模型看成特征提取器,如果一个模型的预训练模型非常的好,那完全就把前面的层看成特征提取器,冻结所有层并且更改最后一层,只训练最后一层,这样我们只训练了最后一层,训练会非常的快速

在这里插入图片描述 

迁移基本步骤

  •  数据的准备
  • 选择数据增广的方式
  • 选择合适的模型
  • 更换最后一层全连接
  • 冻结层,开始训练
  • 选择预测结果最好的模型保存

需要导入的包

import zipfile # 解压文件
import torchvision
from torchvision import datasets, transforms, models
import torch
from torch.utils.data import DataLoader, Dataset
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import copy

数据准备

本次实验的数据到这里下载
首先按照上一章节讲的数据读取方法来准备数据

# 解压数据到指定文件
def unzip(filename, dst_dir):
  z = zipfile.ZipFile(filename)
  z.extractall(dst_dir)
unzip('./data/hymenoptera_data.zip', './data/')
# 实现自己的Dataset方法,主要实现两个方法__len__和__getitem__
class MyDataset(Dataset):
  def __init__(self, dirname, transform=None):
    super(MyDataset, self).__init__()
    self.classes = os.listdir(dirname)
    self.images = []
    self.transform = transform
    for i, classes in enumerate(self.classes):
      classes_path = os.path.join(dirname, classes)
      for image_name in os.listdir(classes_path):
        self.images.append((os.path.join(classes_path, image_name), i))
  def __len__(self):
    return len(self.images)
  def __getitem__(self, idx):
    image_name, classes = self.images[idx]
    image = Image.open(image_name)
    if self.transform:
      image = self.transform(image)
    return image, classes
  def get_claesses(self):
    return self.classes
# 分布实现训练和预测的transform
train_transform = transforms.Compose([
  transforms.Grayscale(3),
  transforms.RandomResizedCrop(224), #随机裁剪一个area然后再resize
  transforms.RandomHorizontalFlip(), #随机水平翻转
  transforms.Resize(size=(256, 256)),
  transforms.ToTensor(),
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
  transforms.Grayscale(3),
  transforms.Resize(size=(256, 256)),
  transforms.CenterCrop(224),
  transforms.ToTensor(),
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 分别实现loader
train_dataset = MyDataset('./data/hymenoptera_data/train/', train_transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=32)
val_dataset = MyDataset('./data/hymenoptera_data/val/', val_transform)
val_loader = DataLoader(val_dataset, shuffle=True, batch_size=32)

选择预训练的模型

这里我们选择了resnet18在ImageNet 1000类上进行了预训练的

model = models.resnet18(pretrained=True) # 使用预训练

使用model.buffers查看网络基本结构

<bound method Module.buffers of ResNet(
 (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
 (layer1): Sequential(
  (0): BasicBlock(
   (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (1): BasicBlock(
   (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
 )
 (layer2): Sequential(
  (0): BasicBlock(
   (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (downsample): Sequential(
    (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
    (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   )
  )
  (1): BasicBlock(
   (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
 )
 (layer3): Sequential(
  (0): BasicBlock(
   (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (downsample): Sequential(
    (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
    (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   )
  )
  (1): BasicBlock(
   (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
 )
 (layer4): Sequential(
  (0): BasicBlock(
   (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (downsample): Sequential(
    (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
    (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   )
  )
  (1): BasicBlock(
   (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
 )
 (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
 (fc): Linear(in_features=512, out_features=1000, bias=True)
)>

我们现在需要做的就是将最后一层进行替换

only_train_fc = True
if only_train_fc:
  for param in model.parameters():
    param.requires_grad_(False)
fc_in_features = model.fc.in_features
model.fc = torch.nn.Linear(fc_in_features, 2, bias=True)

注释:only_train_fc如果我们设置为True那么就只训练最后的fc层
现在观察一下可导的参数有那些(在只训练最后一层的情况下)

for i in model.parameters():
  if i.requires_grad:
    print(i)

Parameter containing:
tensor([[ 0.0342, -0.0336, 0.0279, ..., -0.0428, 0.0421, 0.0366],
    [-0.0162, 0.0286, -0.0379, ..., -0.0203, -0.0016, -0.0440]],
    requires_grad=True)
Parameter containing:
tensor([-0.0120, -0.0086], requires_grad=True)

注释:由于最后一层使用了bias因此我们会多加两个参数

训练主体的实现

epochs = 50
loss_fn = torch.nn.CrossEntropyLoss()
opt = torch.optim.SGD(lr=0.01, params=model.parameters())
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
model.to(device)
opt_step = torch.optim.lr_scheduler.StepLR(opt, step_size=20, gamma=0.1)
max_acc = 0
epoch_acc = []
epoch_loss = []
for epoch in range(epochs):
  for type_id, loader in enumerate([train_loader, val_loader]):
    mean_loss = []
    mean_acc = []
    for images, labels in loader:
      if type_id == 0:
        # opt_step.step()
        model.train()
      else:
        model.eval()
      images = images.to(device)
      labels = labels.to(device).long()
      opt.zero_grad()
      with torch.set_grad_enabled(type_id==0):
        outputs = model(images)
        _, pre_labels = torch.max(outputs, 1)
        loss = loss_fn(outputs, labels)
      if type_id == 0:
        loss.backward()
        opt.step()
      acc = torch.sum(pre_labels==labels) / torch.tensor(labels.shape[0], dtype=torch.float32)    
      mean_loss.append(loss.cpu().detach().numpy())
      mean_acc.append(acc.cpu().detach().numpy())
    if type_id == 1:
      epoch_acc.append(np.mean(mean_acc))
      epoch_loss.append(np.mean(mean_loss))
      if max_acc < np.mean(mean_acc):
        max_acc = np.mean(mean_acc)
    print(type_id, np.mean(mean_loss),np.mean(mean_acc))
print(max_acc)

在使用cpu训练的情况,也能快速得到较好的结果,这里训练了50次,其实很快的就已经得到了很好的结果了

在这里插入图片描述

总结

本节我们使用了预训练模型,发现大概10个epoch就可以很快的得到较好的结果了,即使在使用cpu情况下训练,这也是迁移学习为什么这么受欢迎的原因之一了,如果读者有兴趣可以自己试一试在不冻结层的情况下,使用方法一能否得到更好的结果

到此这篇关于PyTorch 迁移学习实践(几分钟即可训练好自己的模型)的文章就介绍到这了,更多相关PyTorch 迁移内容请搜索猪先飞以前的文章或继续浏览下面的相关文章希望大家以后多多支持猪先飞!

[!--infotagslink--]

相关文章

  • pytorch nn.Conv2d()中的padding以及输出大小方式

    今天小编就为大家分享一篇pytorch nn.Conv2d()中的padding以及输出大小方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-27
  • PyTorch一小时掌握之迁移学习篇

    这篇文章主要介绍了PyTorch一小时掌握之迁移学习篇,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-09-08
  • Linux安装Pytorch1.8GPU(CUDA11.1)的实现

    这篇文章主要介绍了Linux安装Pytorch1.8GPU(CUDA11.1)的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-03-25
  • Pytorch之扩充tensor的操作

    这篇文章主要介绍了Pytorch之扩充tensor的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-05
  • pytorch 自定义卷积核进行卷积操作方式

    今天小编就为大家分享一篇pytorch 自定义卷积核进行卷积操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-06
  • 解决pytorch 交叉熵损失输出为负数的问题

    这篇文章主要介绍了解决pytorch 交叉熵损失输出为负数的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-07-08
  • pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

    今天小编就为大家分享一篇pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-02
  • pytorch 实现冻结部分参数训练另一部分

    这篇文章主要介绍了pytorch 实现冻结部分参数训练另一部分,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-27
  • 从Pytorch模型pth文件中读取参数成numpy矩阵的操作

    这篇文章主要介绍了从Pytorch模型pth文件中读取参数成numpy矩阵的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-04
  • Pytorch 的损失函数Loss function使用详解

    今天小编就为大家分享一篇Pytorch 的损失函数Loss function使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-02
  • pytorch中的上采样以及各种反操作,求逆操作详解

    今天小编就为大家分享一篇pytorch中的上采样以及各种反操作,求逆操作详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-30
  • 基于Pytorch版yolov5的滑块验证码破解思路详解

    这篇文章主要介绍了基于Pytorch版yolov5的滑块验证码破解思路详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-02-25
  • pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解

    今天小编就为大家分享一篇pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-02
  • pyTorch深度学习softmax实现解析

    这篇文章主要介绍了pytorch深度学习中对softmax实现进行了详细解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步...2021-09-30
  • Pytorch 计算误判率,计算准确率,计算召回率的例子

    今天小编就为大家分享一篇Pytorch 计算误判率,计算准确率,计算召回率的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-27
  • Pytorch实现LSTM和GRU示例

    今天小编就为大家分享一篇Pytorch实现LSTM和GRU示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-27
  • Pytorch如何切换 cpu和gpu的使用详解

    这篇文章主要介绍了Pytorch如何切换 cpu和gpu的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-03-01
  • pytorch动态网络以及权重共享实例

    今天小编就为大家分享一篇pytorch动态网络以及权重共享实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-29
  • 解决Pytorch修改预训练模型时遇到key不匹配的情况

    这篇文章主要介绍了解决Pytorch修改预训练模型时遇到key不匹配的情况,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教...2021-06-05
  • pytorch中的squeeze函数、cat函数使用

    这篇文章主要介绍了pytorch中的squeeze函数、cat函数使用,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教...2021-05-20