Pytorch反向传播中的细节-计算梯度时的默认累加操作

 更新时间:2021年6月6日 00:01  点击:2317

Pytorch反向传播计算梯度默认累加

今天学习pytorch实现简单的线性回归,发现了pytorch的反向传播时计算梯度采用的累加机制, 于是百度来一下,好多博客都说了累加机制,但是好多都没有说明这个累加机制到底会有啥影响, 所以我趁着自己练习的一个例子正好直观的看一下以及如何解决:

pytorch实现线性回归

先附上试验代码来感受一下:

torch.manual_seed(6)
lr = 0.01   # 学习率
result = []

# 创建训练数据
x = torch.rand(20, 1) * 10
y = 2 * x + (5 + torch.randn(20, 1)) 

# 构建线性回归函数
w = torch.randn((1), requires_grad=True)
b = torch.zeros((1), requires_grad=True)
# 这里是迭代过程,为了看pytorch的反向传播计算梯度的细节,我先迭代两次
for iteration in range(2):

    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
    
    # 反向传播
    loss.backward()
    
    # 这里看一下反向传播计算的梯度
    print("w.grad:", w.grad)
    print("b.grad:", b.grad)
    
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)

上面的代码比较简单,迭代了两次, 看一下计算的梯度结果:

w.grad: tensor([-74.6261])
b.grad: tensor([-12.5532])
w.grad: tensor([-122.9075])
b.grad: tensor([-20.9364])

然后我稍微加两行代码, 就是在反向传播上面,我手动添加梯度清零操作的代码,再感受一下结果:

torch.manual_seed(6)
lr = 0.01
result = []
# 创建训练数据
x = torch.rand(20, 1) * 10
#print(x)
y = 2 * x + (5 + torch.randn(20, 1)) 
#print(y)
# 构建线性回归函数
w = torch.randn((1), requires_grad=True)
#print(w)
b = torch.zeros((1), requires_grad=True)
#print(b)
for iteration in range(2):
    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
    
    # 由于pytorch反向传播中,梯度是累加的,所以如果不想先前的梯度影响当前梯度的计算,需要手动清0
     if iteration > 0: 
        w.grad.data.zero_()
        b.grad.data.zero_()
    
    # 反向传播
    loss.backward()
    
    # 看一下梯度
    print("w.grad:", w.grad)
    print("b.grad:", b.grad)
    
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)

w.grad: tensor([-74.6261])
b.grad: tensor([-12.5532])
w.grad: tensor([-48.2813])
b.grad: tensor([-8.3831])

从上面可以发现,pytorch在反向传播的时候,确实是默认累加上了上一次求的梯度, 如果不想让上一次的梯度影响自己本次梯度计算的话,需要手动的清零。

但是, 如果不进行手动清零的话,会有什么后果呢? 我在这次线性回归试验中,遇到的后果就是loss值反复的震荡不收敛。下面感受一下:

torch.manual_seed(6)
lr = 0.01
result = []
# 创建训练数据
x = torch.rand(20, 1) * 10
#print(x)
y = 2 * x + (5 + torch.randn(20, 1)) 
#print(y)
# 构建线性回归函数
w = torch.randn((1), requires_grad=True)
#print(w)
b = torch.zeros((1), requires_grad=True)
#print(b)

for iteration in range(1000):
    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
#     print("iteration {}: loss {}".format(iteration, loss))
    result.append(loss)
    
    # 由于pytorch反向传播中,梯度是累加的,所以如果不想先前的梯度影响当前梯度的计算,需要手动清0
    #if iteration > 0: 
    #    w.grad.data.zero_()
    #    b.grad.data.zero_()
  
    # 反向传播
    loss.backward()
 
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)
    
    if loss.data.numpy() < 1:
        break
   plt.plot(result)

上面的代码中,我没有进行手动清零,迭代1000次, 把每一次的loss放到来result中, 然后画出图像,感受一下结果:

没有进行手动清零

接下来,我把手动清零的注释打开,进行每次迭代之后的手动清零操作,得到的结果:

手动清零之后的操作

可以看到,这个才是理想中的反向传播求导,然后更新参数后得到的loss值的变化。

总结

这次主要是记录一下,pytorch在进行反向传播计算梯度的时候的累加机制到底是什么样子? 至于为什么采用这种机制,我也搜了一下,大部分给出的结果是这样子的:

但是如果不想累加的话,可以采用手动清零的方式,只需要在每次迭代时加上即可

w.grad.data.zero_()
b.grad.data.zero_()

另外, 在搜索资料的时候,在一篇博客上看到两个不错的线性回归时pytorch的计算图在这里借用一下:

前向传播
反向传播

以上为个人经验,希望能给大家一个参考,也希望大家多多支持猪先飞。

[!--infotagslink--]

相关文章

  • pytorch nn.Conv2d()中的padding以及输出大小方式

    今天小编就为大家分享一篇pytorch nn.Conv2d()中的padding以及输出大小方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-27
  • PyTorch一小时掌握之迁移学习篇

    这篇文章主要介绍了PyTorch一小时掌握之迁移学习篇,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-09-08
  • Linux安装Pytorch1.8GPU(CUDA11.1)的实现

    这篇文章主要介绍了Linux安装Pytorch1.8GPU(CUDA11.1)的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-03-25
  • Pytorch之扩充tensor的操作

    这篇文章主要介绍了Pytorch之扩充tensor的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-05
  • pytorch 自定义卷积核进行卷积操作方式

    今天小编就为大家分享一篇pytorch 自定义卷积核进行卷积操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-06
  • 解决pytorch 交叉熵损失输出为负数的问题

    这篇文章主要介绍了解决pytorch 交叉熵损失输出为负数的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-07-08
  • pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

    今天小编就为大家分享一篇pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-02
  • pytorch 实现冻结部分参数训练另一部分

    这篇文章主要介绍了pytorch 实现冻结部分参数训练另一部分,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-27
  • 从Pytorch模型pth文件中读取参数成numpy矩阵的操作

    这篇文章主要介绍了从Pytorch模型pth文件中读取参数成numpy矩阵的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-04
  • Pytorch 的损失函数Loss function使用详解

    今天小编就为大家分享一篇Pytorch 的损失函数Loss function使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-02
  • pytorch中的上采样以及各种反操作,求逆操作详解

    今天小编就为大家分享一篇pytorch中的上采样以及各种反操作,求逆操作详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-30
  • 基于Pytorch版yolov5的滑块验证码破解思路详解

    这篇文章主要介绍了基于Pytorch版yolov5的滑块验证码破解思路详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-02-25
  • pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解

    今天小编就为大家分享一篇pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-02
  • pyTorch深度学习softmax实现解析

    这篇文章主要介绍了pytorch深度学习中对softmax实现进行了详细解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步...2021-09-30
  • Pytorch 计算误判率,计算准确率,计算召回率的例子

    今天小编就为大家分享一篇Pytorch 计算误判率,计算准确率,计算召回率的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-27
  • Pytorch实现LSTM和GRU示例

    今天小编就为大家分享一篇Pytorch实现LSTM和GRU示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-27
  • Pytorch如何切换 cpu和gpu的使用详解

    这篇文章主要介绍了Pytorch如何切换 cpu和gpu的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-03-01
  • pytorch动态网络以及权重共享实例

    今天小编就为大家分享一篇pytorch动态网络以及权重共享实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-29
  • 解决Pytorch修改预训练模型时遇到key不匹配的情况

    这篇文章主要介绍了解决Pytorch修改预训练模型时遇到key不匹配的情况,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教...2021-06-05
  • pytorch中的squeeze函数、cat函数使用

    这篇文章主要介绍了pytorch中的squeeze函数、cat函数使用,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教...2021-05-20