DataFrame 数据合并实现(merge,join,concat)

 更新时间:2020年6月14日 18:36  点击:1901

merge

merge 函数通过一个或多个键将数据集的行连接起来。
场景:针对同一个主键存在的两张包含不同特征的表,通过主键的链接,将两张表进行合并。合并之后,两张表的行数不增加,列数是两张表的列数之和。

def merge(left, right, how='inner', on=None, left_on=None, right_on=None,
     left_index=False, right_index=False, sort=False,
     suffixes=('_x', '_y'), copy=True, indicator=False,
     validate=None):

参数 描述
how 数据融合的方法,从在不重合的键,方式(inner、outer、left、right)
on 用来对齐的列名,一定要保证左表和右表存在相同的列名。
left_on 左表对齐的列,可以是列名。也可以是DataFrame同长度的arrays
right_on 右表对齐的列,可以是列名。
left_index 将左表的index用作连接键
right_index 将右表的index用作连接键
suffixes 左右对象中存在重名列,结果区分的方式,后缀名。
copy 默认:True。将数据复制到数据结构中,设置为False提高性能。

特性示例(1)

默认:以重叠的列名当作连接键

df1 = pd.DataFrame({'key': ['one', 'two', 'two'],
          'data1': np.arange(3)})
df2 = pd.DataFrame({'key': ['one', 'three', 'three'],
          'data2': np.arange(3)})
df3 = pd.merge(df1, df2)
print(df1)
print(df2)
print(df3)

  key data1
0 one   0
1 two   1
2 two   2
   key data2
0  one   0
1 three   1
2 three   2
  key data1 data2
0 one   0   0

特性示例(2)

默认:做inner连接,取key的交集
连接方式还有left right outer

df1 = pd.DataFrame({'key': ['one', 'two', 'two'],
          'data1': np.arange(3)})
df2 = pd.DataFrame({'key': ['one', 'three', 'three'],
          'data2': np.arange(3)})
df3 = pd.merge(df1, df2)
df4 = pd.merge(df1, df2, how='left')
print(df3)
print(df4)

  key data1 data2
0 one   0   0
  key data1 data2
0 one   0  0.0
1 two   1  NaN
2 two   2  NaN

特性示例(3)

多键连接时将连接键做成列表传入。
on默认是两者同时存在的列

df1 = pd.DataFrame({'key': ['one', 'two', 'two'],
          'value': ['a', 'b', 'c'],
          'data1': np.arange(3)})
df2 = pd.DataFrame({'key': ['one', 'two', 'three'],
          'value': ['a', 'c', 'c'],
          'data2': np.arange(3)})
df5 = pd.merge(df1, df2)
df6 = pd.merge(df1, df2, on=['key', 'value'], how='outer')
print(df5)
print(df6)

  key value data1 data2
0 one   a   0   0
1 two   c   2   1
   key value data1 data2
0  one   a  0.0  0.0
1  two   b  1.0  NaN
2  two   c  2.0  1.0
3 three   c  NaN  2.0

特性示例(4)

两个对象的列名不同,需要分别制定。

df7 = pd.merge(df1, df2, left_on=['key1','data1'], right_on=['key2','data2'], how='outer')
print(df7)

 key1 value_x data1  key2 value_y data2
0 one    a  0.0  one    a  0.0
1 two    b  1.0  two    c  1.0
2 two    c  2.0  NaN   NaN  NaN
3 NaN   NaN  NaN three    c  2.0

join

join方法将两个DataFrame中不同的列索引合并成为一个DataFrame
参数的意义与merge基本相同,只是join方法默认左外连接how=left

def join(self, other, on=None, how='left', lsuffix='', rsuffix='',
     sort=False):

示例

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A1'],
          'B': ['B0', 'B1', 'B2']},
          index=['K0', 'K1', 'K2'])
df2 = pd.DataFrame({'C': ['C1', 'C2', 'C3'],
          'D': ['D0', 'D1', 'D2']},
          index=['K0', 'K1', 'K3'])
df3 = df1.join(df2)
df4 = df1.join(df2, how='outer')
df5 = df1.join(df2, how='inner')
print(df3)
print(df4)
print(df5)

   A  B  C  D
K0 A0 B0  C1  D0
K1 A1 B1  C2  D1
K2 A1 B2 NaN NaN
   A  B  C  D
K0  A0  B0  C1  D0
K1  A1  B1  C2  D1
K2  A1  B2 NaN NaN
K3 NaN NaN  C3  D2
   A  B  C  D
K0 A0 B0 C1 D0
K1 A1 B1 C2 D1

concat

制定按某个轴进行连接(可横向可纵向),也可以指定连接方法。

def concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
      keys=None, levels=None, names=None, verify_integrity=False,
      sort=None, copy=True):

属性 描述
objs 合并的对象集合。可以是Series、DataFrame
axis 合并方法。默认0,表示纵向,1横向
join 默认outer并集,inner交集。只有这两种
join_axes 按哪些对象的索引保存
ignore_index 默认Fasle忽略。是否忽略原index
keys 为原始DataFrame添加一个键,默认无

示例(1)

s1 = pd.Series(['a', 'b'])
s2 = pd.Series(['c', 'd'])
s3 = pd.concat([s1, s2])
s4 = pd.concat([s1, s2], ignore_index=True)
print(s3)
print(s4)

0  a
1  b
dtype: object
0  c
1  d
dtype: object
0  a
1  b
0  c
1  d
dtype: object
0  a
1  b
2  c
3  d
dtype: object

示例(2)

df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['A', 0])
df2 = pd.DataFrame([['a', 1], ['b', 2]], columns=['B', 0])
df3 = pd.concat([df1, df2], join='inner')
print(df3)

  0
0 1
1 2
0 1
1 2

示例(3)

df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['A', 0])
df2 = pd.DataFrame([['a', 1], ['b', 2]], columns=['B', 0])
df3 = pd.concat([df1, df2], axis=1, join_axes=[df1.index])
print(df3)

  A 0 B 0
0 a 1 a 1
1 b 2 b 2

append

横向和纵向同时扩充,不考虑columns和index

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A1'],
          'B': ['B0', 'B1', 'B2']},
          index=['K0', 'K1', 'K2'])
s2 = pd.Series(['X0','X1'], index=['A','B'])
result = df1.append(s2, ignore_index=True)
print(result)

   A  B
K0 A0 B0
K1 A1 B1
K2 A1 B2
  A  B
0 A0 B0
1 A1 B1
2 A1 B2
3 X0 X1

汇总

  • concat:可以沿一条轴将多个对象连接到一起
  • merge:可以根据一个或多个键将不同的DataFrame中的行连接起来。
  • join:inner是交集,outer是并集。

到此这篇关于DataFrame 数据合并实现(merge,join,concat)的文章就介绍到这了,更多相关DataFrame 数据合并内容请搜索猪先飞以前的文章或继续浏览下面的相关文章希望大家以后多多支持猪先飞! 

[!--infotagslink--]

相关文章

  • Pandas实现DataFrame按行求百分数(比例数)

    今天小编就为大家分享一篇Pandas实现DataFrame按行求百分数(比例数),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-09
  • Pandas.DataFrame转置的实现 <font color=red>原创</font>

    这篇文章主要介绍了Pandas.DataFrame转置的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-03-09
  • 十分钟轻松掌握dataframe数据选择

    这篇文章主要介绍了十分钟轻松掌握dataframe数据选择,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-04-04
  • python读取hdfs并返回dataframe教程

    这篇文章主要介绍了python读取hdfs并返回dataframe教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-06-06
  • Pandas 解决dataframe的一列进行向下顺移问题

    今天小编就为大家分享一篇Pandas 解决dataframe的一列进行向下顺移问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-09
  • pandas中DataFrame数据合并连接(merge、join、concat)

    这篇文章主要给大家介绍了关于pandas中DataFrame 数据合并连接(merge、join、concat)的相关资料,文中介绍的非常详细,需要的朋友可以参考下...2021-05-30
  • pandas DataFrame运算的实现

    这篇文章主要介绍了pandas DataFrame运算的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-06-14
  • 详解R语言数据合并一行代码搞定

    这篇文章主要介绍了详解R语言数据合并一行代码搞定,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-05-06
  • Pandas把dataframe或series转换成list的方法

    这篇文章主要介绍了Pandas把dataframe或series转换成list的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-06-14
  • pyspark创建DataFrame的几种方法

    为了便于操作,使用pyspark时我们通常将数据转为DataFrame的形式来完成清洗和分析动作。那么你知道pyspark创建DataFrame有几种方法吗,下面就一起来了解一下...2021-05-17
  • 浅谈pandas dataframe对除数是零的处理

    这篇文章主要介绍了浅谈pandas dataframe对除数是零的处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-07-20
  • python中Array和DataFrame相互转换的实例讲解

    在本篇文章里小编给大家整理的是一篇关于python中Array和DataFrame相互转换的实例讲解内容,对此有需要的朋友们可以学参考下。...2021-02-04
  • pandas.DataFrame.drop_duplicates 用法介绍

    这篇文章主要介绍了pandas.DataFrame.drop_duplicates 用法介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-07-07
  • pandas创建DataFrame的7种方法小结

    这篇文章主要介绍了pandas创建DataFrame的7种方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-06-14
  • DataFrame 数据合并实现(merge,join,concat)

    这篇文章主要介绍了DataFrame 数据合并实现(merge,join,concat),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-06-14
  • python pymysql链接数据库查询结果转为Dataframe实例

    这篇文章主要介绍了python pymysql链接数据库查询结果转为Dataframe实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-06-06
  • 如何更改 pandas dataframe 中两列的位置

    如何更改 pandas dataframe 中两列的位置?今天小编就为大家介绍两种操作方法,希望对大家有所帮助,还等什么?一起跟随小编过来看看吧...2020-05-09
  • pandas dataframe 中的explode函数用法详解

    这篇文章主要介绍了pandas dataframe 中的explode函数用法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-19
  • 详解pandas获取Dataframe元素值的几种方法

    这篇文章主要介绍了详解pandas获取Dataframe元素值的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-06-14
  • pandas Dataframe实现批量修改值的方法

    这篇文章主要介绍了pandasDataframe实现批量修改值的方法,在使用dataframe的时候有时候会碰到需要批量修改数据的时候,下面文章主要说明两种情况使用iloc对某几行某几列进行全部修该和对数据进行判定后,相互+/-/*某个数,使用内置函数,需要的朋友可以参考一下...2022-06-19